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0 Zusammenfassung 
Im Juli 2024 startete das Kooperationsprojekt zwischen der AOK Niedersachsen (AOKN) und dem 

Niedersächsischen Landesgesundheitsamt (NLGA) als Pilotprojekt mit der übergeordneten 

Zielsetzung der Analyse des Einflusses des Klimas auf Morbidität und Mortalität und den damit 

verbundenen Herausforderungen für die medizinischen Versorgung. [Kurzbezeichnung „AnKliMM“ ]. 

Analysiert wurden dabei mit Blick auf einen möglichen Einfluss des Klimas beziehungsweise des 

Wetters alle stationären Aufenthalte (gemäß Aufnahmedatum) in 2022 und 2023 von AOK­

Versicherten in der Klimaregion „östliches Flachland“, die eine bestimmte Diagnose (Dehydration, 

Niereninsuffizienz, vorzeitiger Blasensprung oder Frühgeburt) aufwiesen. Dabei wurde zwischen 

elektiven und Notfall­Aufnahmen unterschieden.  

Primäre Zielsetzung der Pilotphase war der Vergleich verschiedener methodischer Ansätze 

hinsichtlich ihrer Praktikabilität für Abrechnungsdaten. Darüber hinaus sollten für 

Folgeuntersuchungen Hypothesen für eine induktive Analyse spezifischer Zusammenhänge zwischen 

Klimaereignissen und Morbidität formuliert werden können.  

Hierzu sollte zunächst der jahreszeitliche Verlauf von der sich aus den Abrechnungsdaten 

abgeleiteten Morbidität in Form spezifischer stationärer Aufnahmen untersucht und dabei mögliche 

Einflüsse von tagesbezogenen Klimadeterminanten, insbesondere Tagestemperatur, explorativ 

visualisiert sowie modelliert werden. Hierbei sollte auch der zeitliche Verzug „Klimaereignis“ bis zur 

„Inanspruchnahme von medizinischer Versorgungsleistung“ wenn möglich evaluiert werden.  

Bereits vor dem geplanten Projektende zum 30.06.2026 konnte die Pilotphase nach 15 Monaten im 

September 2025 abgeschlossen und aufbauend auf den gewonnenen Erkenntnissen eine zweite 

Projektphase mit erweiterten Daten beantragt werden. Die Bewilligung der beantragten zweiten 

Projektphase durch das niedersächsische Sozialministerium erfolgte am 25.09.2025. 

Die folgenden methodischen Ergebnisse der Pilotphase können festgehalten werden: 

­ Der Modellvergleich legt nahe, sich bei der Falldefinition allein auf Hauptdiagnosen zu 

beschränken. Zudem sind bei den Einweisungshäufigkeiten auch Wochentageffekte zu 

berücksichtigen.  

­ Grundsätzlich erwiesen sich die Poissonmodellansätze als erfolgsversprechend, so dass mit 

Abschluss der Pilotphase konditionierte Poisson Modelle (mit geeigneter Panel­ 

beziehungsweise Stratifizierungsvariable) favorisiert werden. 

­ Dabei werden Tagesfallzahlen in Abhängigkeit von zeitabhängigen Einflussgrößen modelliert. 

Die Überlegung, alternativ wöchentlich aggregierte Fallzahlen zu betrachten, wurde 

fallengelassen.  

­ Allerdings konnten komplexere Modelle – etwa mit diversen verzögerten Effekten ­ mit dem 

vorliegenden zwei­Jahres­Datensatz nicht stabil geschätzt und gegenübergestellt werden. 

Insofern war der angestrebte Vergleich verschiedener statistisch­epidemiologischer 

Auswertungsstrategien mit dem bisherigen Datensatz nur ansatzweise möglich. 

Daneben zeigen sich bereits Hinweise auf inhaltliche Ergebnisse, die es jedoch auf einer breiteren 

Datenbasis zu bestätigen gilt: 

­ In den statistischen Modellen konnten (bislang) keine Effekte von Hitze auf die 

Einweisungshäufigkeit bei den Diagnosen Blasensprung und Frühgeburt identifiziert werden. 
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­ Tendenzen für vermehrte Einweisungen im Hitzekontext zeigen sich hingegen deutlich bei 

Dehydration und Niereninsuffizienz. Subanalysen, die auch verschiedene Altersgruppen 

berücksichtigen oder auch gezielt Pflegeheimbewohner untersuchen, waren aufgrund zu 

geringer Fallzahlen allerding statistisch nicht stabil genug. 

Auf eine eigenständige Mortalitätsanalyse wurde verzichtet, da die Todesursache unbekannt ist und 

damit ebenso ein möglicher Zusammenhang mit einer der im Projekt betrachteten Diagnosen. 

Insgesamt wurde die statistische Power, um mögliche Effekte von Hitze auf die Häufigkeit von 

diagnosespezifischen Aufnahmen nachzuweisen, als insgesamt zu gering angesehen. Dies hatte 

verschiedene Gründe: 

o Bei den verschiedenen auf der Basis von Haupt­ und Nebendiagnosen abgeleiteten 

Falldefinitionen zeigte es sich, dass auf die Hauptdiagnose eingeschränkte 

Falldefinitionen eher zu plausiblen Effektschätzungen führten als Falldefinitionen, die 

die Nennung in einer der Nebendiagnosen berücksichtigten. Fälle auf Basis allein der 

Hauptdiagnose sind aber seltener, so dass sich die Fallzahl reduzierte. 

o Zudem zeigte es sich, dass die Exposition, i.e. die Wetterdaten in den beiden 

Beobachtungsdaten 2022 und 2023 wenige mehrtägige Hitzeereignisse aufwiesen 

etwa im Vergleich zu den Jahren 2018 und 2019.  Mithin fehlt es an der Variabilität 

bei der Exposition, was die Identifikation von Effekten erschwert.  

o Speziell bei den Diagnosen Blasensprung und Frühgeburt scheinen generelle 

längerfristige zeitliche Trends bei der ICD­Codierung vorzuliegen, was die 

Identifikation eines möglichen ebenfalls zeitabhängigen Hitzeeffektes erschwert, da 

er quasi maskiert wird. Dies müsste abseits der rein epidemiologischen Analysen 

abgeklärt werden. 

Dies führte zu den Vorgaben für die zweite Datenziehung in der anschließenden Projektphase: 

o Reduktion der analysierten Fälle allein auf Basis der einschlägigen Hauptdiagnose.

o Ausdehnung der Beobachtungsphase auf die Jahre 2018 – 2024.

Für die sich anschließende Projektphase sollen – aufbauend auf den Methoden und vorläufigen 

Ergebnissen der Pilotphase – primär folgende Fragen beantwortet werden können: 

o Bestätigen sich die Tendenzen, wonach bei den Diagnosen Niereninsuffizienz und 

Dehydration Temperatureffekte bei den Einweisungen identifizieren lassen, 

demgegenüber bei den Geburtsereignissen aber nicht? 

o Zeigen sich für stationäre Pflegefälle stärker ausgeprägte Effekte? 
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1 Hintergrund und Zielsetzung 

1.1 Auswirkungen des Klimas auf die Gesundheit 

Der Klimawandel stellt Gesellschaft und Politik in Deutschland zunehmend vor neue und nicht 

gekannte Herausforderungen, nicht nur umweltbezogen, sondern zunehmend auch mit dem Fokus 

auf die menschliche Gesundheit. Während andere europäische Lander wie Italien oder auch 

Frankreich die Beobachtung von Mortalität oder auch Morbidität inzwischen im Rahmen des Ausbaus 

ihrer Hitzeaktionspläne implementiert haben, sieht sich Deutschland noch am Beginn einer die 

politischen Maßnahmen sinnvoll unterstützenden Evaluation geeigneter Gesundheitsindikatoren.  

Die Klimastrategie der AOK Niedersachsen befasst sich auch mit Auswirkungen des Klimas auf die 

Versorgung von Versicherten. 

Mögliche Szenarien der gesundheitlichen Auswirkungen von Klima sowie damit zusammenhängender 

Umwelteinflüsse sind in der Abbildung 1.1 zusammengefasst:  

Abbildung 1.1: Auswirkungen von Klima und Umwelt auf die Gesundheit 

Die Auswirkungen von Temperatur und insbesondere extremen Klimaereignissen auf Mortalität und 

Morbidität sind inzwischen mehrfach international belegt. Dabei ist die Mortalität im Zusammenhang 

mit der durchschnittlichen Tagestemperatur bereits in verschiedenen Ländern modelliert worden. 

Hier zeigt sich ein oftmals als u­förmig bezeichneter Verlauf: fallende Temperaturen sind ebenso wie 

höhere Temperaturen mit einem Mortalitätsanstieg verbunden. Hierbei ist der Anstieg der Mortalität 

pro zusätzlichen Grad Celsius bei Hitze deutlich stärker ausgeprägt als bei Kälte.  

Dies visualisiert die folgende Abbildung aus Zacharias, 2012: 
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Abbildung 1.2 (Zacharias, 2012): Schematische Mortalitätsrate in Abhängigkeit von der durchschnittlichen 

täglichen Lufttemperatur (nach einer Meta­Analyse von Yu et al. (2012)) 

Für Deutschland liegt der „Knickpunkt“ zwischen Hitze­ und Kälteeffekt, der somit das „thermische 

Optimum“ darstellt, bei 20 Grad.  

Ein Problem bei der Quantifizierung von Temperatureffekten liegt dabei in der Definition, was unter 

„temperaturbedingter“ Mortalität beziehungsweise Morbidität zu verstehen ist:  

Die Verschlüsselung von Todesursachen sowie Diagnosen bei Behandlungsfällen erfolgt gemäß eines 

international eingesetzten Codierungssystem (i. d. R. ICD­10). Nur wenige Diagnosen weisenin der 

ICD einen Hinweis auf auslösende Faktoren auf, wie die unmittelbar temperaturbezogenen 

Diagnosen T67 – T69. Bei der überwiegenden Mehrheit der Fälle kann nicht von dem Diagnosecode 

auf Temperaturereignisse geschlossen werden, auch wenn das Temperaturereignis mit einem 

Krankenhausaufenthalt oder dem vorzeitigen Versterben in kausalem Zusammenhang stünde. Die 

Betrachtung von spezifischer Mortalität – etwa für Herz­Kreislauf­Erkrankungen oder auch 

Niereninsuffizienz ­ kann somit nicht unmittelbar über Fallhäufigkeiten erfolgen, da Behandlungsfälle 

auch ohne extreme Temperaturereignisse eintreten. Um die Gesamtheit der direkt durch 

Temperaturereignisse, speziell von Hitzeperioden, bedingten beziehungsweise zuordenbaren 

Todesfälle zu schätzen, werden vom Robert Koch­Institut (RKI) statistische Schätzmodelle 

herangezogen, um Übersterblichkeit beziehungsweise Übermortalität zu schätzen. Diese quasi 

„zusätzlichen Fälle“ lassen sich am besten als attributable Fälle auffassen. 

So lässt sich eine Übersterblichkeit sowohl in den Sommer­ wie Wintermonaten bei der Betrachtung 

der Gesamtmortalität modellieren: Während für ganz Deutschland vom RKI sowohl die 

Übersterblichkeit über das ganze Jahren wie speziell mit Blick auf eine hitzebedingte 

Übersterblichkeit allein die  wärmere Jahreszeit wird (an der Heiden, 2023, 2025) modelliert werden,  

sind hierzulande bislang wenige Studien zur Morbidität oder auch zur Inanspruchnahme von 

Leistungen der GKV aufgrund von Klimaereignissen bekannt. Eine der Ausnahmen bildet eine Studie 

auf Basis von Daten der AOK Rheinland und Hamburg, die die Häufigkeit der Inanspruchnahme von 

Leistungen der GKV während Hitzetagen mit Kontrollzeitpunkten vergleicht (Schillo, 2019).   
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1.2 Zielsetzung 

Im Rahmen der Kooperation zwischen AOK Niedersachsen und dem NLGA sollte zunächst als 

Pilotprojekt der jahreszeitliche Verlauf von der sich aus den Abrechnungsdaten abgeleiteten 

Morbidität in Form spezifischer stationärer Aufnahmen untersucht und dabei mögliche Einflüsse von 

tagesbezogenen Klimadeterminanten, insbesondere Tagestemperatur, explorativ visualisiert sowie 

modelliert werden. Hierbei war auch der zeitliche Verzug „Klimaereignis“ bis zur „Inanspruchnahme 

von medizinischer Versorgungsleistung“ zu evaluieren. Verschiedene methodische Ansätze sollten im 

Hinblick auf ihre Praktikabilität für diese Sekundärdaten evaluiert werden. 

In Anschluss an die Pilotphase sollten Hypothesen für eine induktive Analyse für spezifische 

Zusammenhänge zwischen Klimaereignissen und Morbidität formuliert werden, die dann in einer 

folgenden Projektphase aufgegriffen und inferenzstatistisch überprüft werden könnten. 

1.3 Studiendesign und Untersuchungspopulation 

Es wurden Routine­Krankenhaus­Abrechnungsdaten der AOKN (Krankenhausaufnahmen, 

Aufnahmediagnosen etc.) sowie parallel verfügbare meteorologische Daten im Jahresverlauf 

(tägliche Auflösung) analysiert.  

Im Einzelnen handelte es sich um eine retrospektive Datenanalyse von AOKN­

Routineabrechnungsdaten der Jahre 2022 und 2023. Die explorativ­deskriptiven Auswertungen der 

Pilotphase beschränken sich auf stationäre Falldaten, 

Eingeschlossen werden Krankenhausaufnahmen vom 01.01.2022 bis 31.12.2023, alle Altersstufen, 

Männer sowie Frauen. 

Für die Auswertungen wurden anhand der Stammdaten nur Fallmeldungen der Patientinnen und 

Patienten herangezogen, die zum Stichtag 31.12.2022 bei der AOKN versichert, in der gemäß Kapitel 

1.4 eingegrenzten Untersuchungsregion wohnhaft waren sowie mindestens eine der in Kapitel 1.5 

definierten Diagnosen – als Haupt­ oder Nebendiagnose hatten.  

1.4 Untersuchungsregion 

Das Flächenland Niedersachsen kann in verschiedene „Klimaregionen“ unterteilt werden, für die 

auch der Zusammenhang zwischen meteorologischen Daten und gesundheitlichen Outcomes 

differieren kann. Die Auswertungen wurden somit zunächst auf eine Klimaregion beschränkt. Zum 

Zeitpunkt der ursprünglichen Projektkonzipierung wurde die folgende Eingruppierung verwendet: 
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Abbildung 1.3: Klimaregionen in Niedersachsen (Alte Einteilung bis 2023) 

Neben der Forderung, dass Untersuchungsgebiet innerhalb einer dieser Klimaregionen liegen müsse, 

sollte zudem auch eine vergleichbare regionale Versorgungsstruktur in dem Untersuchungsgebiet 

bestehen.  

Im Ergebnis wurde ein Teil der Metropolregion Hannover – Braunschweig – Göttingen – Wolfsburg 

ausgewählt, der sich nach der zum Zeitpunkt der Projektplanung gültigen Einteilung in der 

Klimaregion „östliches Flachland“ befand: Im Einzelnen sind dies folgende Kommunen mit insgesamt 

rund 1,8 Millionen Einwohnerinnen und Einwohner, somit rund 22 % der niedersächsischen 

Bevölkerung von rund 8 Millionen:  

o Region Hannover  1,17 Millionen Einwohner 

o Landkreis Peine 0,14 Millionen Einwohner 

o Stadt Braunschweig 0,25 Millionen Einwohner 

o Stadt Salzgitter 0,10 Millionen Einwohner 

o Landkreis Wolfenbüttel  0,12 Millionen Einwohner 

Diese fünf Landkreise werden nach der im Dezember 2023 veröffentlichten aktuellen Einteilung der 

Klimaregion der „subkontinentale Region“ zugeordnet1: 

1 https://nibis.lbeg.de/DOI/dateien/Geofakten_43_2023_Text_4.pdf 
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Abbildung 1.4: Klimaregionen in Niedersachsen (aktuelle Einteilung)

1.5 Betrachtete Fälle ­ Zieldiagnosen 

Im Vergleich der Zeitreihe der Tagesmittelwerte der Klimazone sollte die zeitliche Entwicklung der 

Häufigkeit und Dauer von Krankenhausaufenthalten explorativ ausgewertet werden. Auch wenn 

international diverse Diagnosen in Abhängigkeit zu der Außentemperatur und speziell im Kontext von 

Hitzewellen (Hopp, 2018) diskutiert werden, beschränkte sich das Projekt auf zwei Diagnosegruppen, 

die im Kontext Hitzewellen aktuell diskutiert werden sowie auch mit Blick auf möglich Präventions­ 

beziehungsweise Aufklärungsarbeit geeignet erscheinen: 

� Volumenmangel beziehungsweise Dehydration (ICD­10 E86) oder akutes Nierenversagen 

(ICD­10 N17), siehe zum Beispiel Schillo, 2019, für Volumenmangel E86 beziehungsweise 

Nidens, 2023, für Nierenerkrankungen allgemein. Hier wird speziell auf die Gruppe der 

älteren Patienten, insbesondere über 85jährigen, Bezug genommen. Besonderes Augenmerk 

liegt auf Pflegeheimbewohnerinnen / ­bewohnern, da hier ein Einfluss klimatischer 

Bedingungen besonders vermutet wird. 

� Vorzeitiger Blasensprung (ICD­10 O42) sowie Frühgeburten (ICD­10 O60.1 & O60.3), siehe 

zum Beispiel Schiffano 2013, 2016; Asta, 2019; Sun, 2020; Song, 2019; Zhang, 2017. Hiermit 

wird eine Diagnosegruppe betrachtet, die ausschließlich die jüngeren weiblichen 

Versicherten betrifft. 

Die explorativ­deskriptiven Auswertungen der Pilotphase beschränkten sich auf stationäre Falldaten; 

im Vergleich zu ambulanten Abrechnungsdaten sind sie zeitlich schneller verfügbar, so dass sie ggf. 

auch bei einem nachfolgenden „zeitnahen Monitoring“ verwendet werden könnten. 

Die Falldefinitionen zur klinischen Morbidität erfolgte sowohl über die Hauptdiagnose wie auch über 

sonstige dokumentierte Diagnosen. 
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2 Datenaufbereitung 

2.1 Datenfluss und erforderliche Pseudonymisierung der Abrechnungsdaten 

Dem NLGA wurde ein von der AOK aufbereiteter Datensatz auf Einzelfallebene zur Verfügung 

gestellt. Darin enthalten waren alle in 2022 oder 2023 eingewiesenen stationären Aufenthalte von 

Männern oder Frauen, bei denen mindestens eine der Zieldiagnosen gestellt wurde und die zum 

31.12.2022 in der Untersuchungsregion wohnten (Hauptwohnsitz). Daten von Diversen werden nicht 

übermittelt, da hier zu geringe Fallzahlen bei geschlechtsspezifischen Analysen zu erwarten sind.2

Dabei wurden personenbezogene Informationen, wenn möglich, aggregiert oder vergröbert.  

Die zu analysierenden Daten umfassten primär Informationen, die im Rahmen der Abrechnung von 

stationären Leistungen nach § 301 SGB V von den Krankenhäusern an die Krankenkassen übermittelt 

werden. Grundlage für die Analysen war ein aufbereiteter Datensatz auf Einzelfallebene. Darin 

enthalten waren die jeweils abgeschlossenen stationären Aufenthalte von Männern oder Frauen, bei 

denen eine der genannten Diagnosen als Aufnahme­ oder Hauptdiagnose gestellt wurde.  

Alle Fall­Datensätze wurden mit einer individuellen nicht­sprechenden Patienten­

Identifikationsnummer versehen, so dass neben reinen aggregierten Fallanalysen auch 

patientenbezogene Analysen möglich waren. Das NLGA erhielt keine Klarnamen und nicht die reale 

Versicherungsnummer des Patienten. Da im Vorfeld etwaige regionale Auswertungen als sinnvoll 

angesehen wurden, um das lokale Krankheitsgeschehen auf Kreisebene näher zu betrachten, wurde 

auch eine nicht­sprechende Identifikationsnummer für das Krankenhaus mitgeführt.  

Im Einzelnen wurden aus den stationären Abrechnungsdaten folgende Informationen übermittelt 

(vgl. dazu im Anhang: Datenfluss der Abrechnungsdaten): 

� Fall­Identifizierungsnummer [ID]: weder sprechende ID noch die KV­Abrechnungsziffer; allein 

eine laufende Nummer wird für etwaige Rückfragen zu den Datensätzen mitübertragen. 

� Analog Patienten­Identifizierungsnummer 

� Identifikationsnummer des Krankenhauses, ebenfalls als laufende Nummer  

� Aufnahmedatum / Entlassungsdatum: Es wurde das Datum der Aufnahme sowie die 

stationäre Behandlungsdauer übertragen. 

� Angaben zum Vitalstatus: Bei stationär oder innerhalb von 28 Tagen nach Entlassung 

poststationär verstorbenen Patienten wurde das Todesdatum übermittelt. 

� Haupt­ und Nebendiagnosen. 

Diese Daten wurden durch patientenbezogene Stammdaten ergänzt (nur Angaben von Patienten, die 

einen der definierten stationären Aufenthalte hatten; Verknüpfung über Patienten­

Identifikationsnummer): 

� Soziodemografische Angaben: Geschlecht (männlich oder weiblich) und Alter (zum 31.12.22). 

� Angabe zu Aufenthalt in einer stationären Pflegeeinrichtung (zum 31.12.22). 

� Wohnort: Angabe von einer der fünf Kommunen (Stadt, Landkreis oder Region) des 

Untersuchungsgebietes sowie des amtlichen Gemeindeschlüssel, um innerhalb der Region 

Hannover zwischen Stadt und ehemaligem Landkreis Hannover zu differenzieren.  

2 Eine Darstellung von Statistiken von allen Patienten sowie nur von den männlichen sowie den weiblichen 

Patienten würde unmittelbar eine entsprechende Statistik für diverse Patienten ermöglichen.
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Die Verarbeitung am NLGA der von der AOK im September 2024 übermittelten Originaldaten wurde 

im Juli 2025 beendet. Die daraus erstellten Dateien werden nach Ende der auf die Pilotphase 

(Bericht) folgenden 10­jährige Aufbewahrungspflicht (zur Überprüfbarkeit sämtlicher Analysen) 

gelöscht.  

2.2 Meteorologische Daten ­ „Expositionsdatei“  
Tagesbezogene meteorologische Daten, die den zeitlichen Verlaufskurven der stationären Morbidität 

gegenübergestellt wurden, stammen von den Messstationen des Deutschen Wetterdienstes (DWD). 

Der DWD unterhält in der Untersuchungsregion an verschiedenen Standorten Wetterstationen, 

insbesondere an drei Standorten für das „Hauptamtliche Stationsnetz“ mit insgesamt 207 Stationen 

deutschlandweit (Stand 01.07.22). I.e.  

� 02014: Hannover­Flughafen, Region Hannover 

� 05715: Wunstdorf, Region Hannover 

� 00660 – 00662: Braunschweig, Stadt Braunschweig 

Für diese DWD­Stationen liegen für den Untersuchungszeitraum entsprechende Werte in 

unterschiedlichen zeitlichen Auflösungen, u.a. täglich (Tages­Mittelwert), vor3. Für das Hauptamtliche 

Stationsnetz wurden definitionsgemäß keine innerstädtischen Klimastationen herangezogen. 

Von den Stationen wurde die Station Hannover als Referenz gewählt, und somit die Werte dieser 

Station den Fallzahlen zu stationären Aufnahmen gegenübergestellt.  

Neben der mittleren Tagestemperatur werden in der Literatur auch andere Parameter betrachtet, 

insbesondere die Tageshöchsttemperatur oder auch die sogenannte „gefühlte Temperatur“, in die 

Angaben zur Luftfeuchtigkeit eingehen. Auf einen einzelnen Tag bezogen gibt es folgende 

Klimatologische Kenntage (gemäß DWD Wetterlexikon): 

� Sommertag:  Tagesmaximaltemperatur >= 25 Grad Celsius, 

� Hitzetag:  Tagesmaximaltemperatur >= 30 Grad Celsius, 

� Wüstentag:  Tagesmaximaltemperatur >= 35 Grad Celsius, 

� Tropennacht: Tagesminimaltemperatur >= 20 Grad Celsius. 

Eine einheitliche Definition für eine Hitzewelle, die über mehrere Tage besteht, gibt es nicht. Eine für 

Mitteleuropa verwendete Methode der Auswertung geht auf den tschechischen Meteorologen Jan 

Kysely zurück, diese einzelnen Tage der Hitzewelle werden Kysely­Tag genannt4:  

„Eine Hitzewelle wird festgestellt, sobald an mindestens drei Tagen in Folge die 

Maximaltemperatur 30 °C überschreitet und hält so lange an, wie die mittlere 

Maximaltemperatur über die gesamte Periode über 30 °C bleibt und an keinem Tag eine  

Maximaltemperatur von 25 °C unterschritten wird.“ 

Eine gerade für Auswertungen von Verlaufskurven einfachere Festlegung einer Hitzewelle ist mit der 

Festlegung „Hitzetage an mindestens drei aufeinander folgenden Tagen“ erfüllt; hierbei würde die 

Hitzewelle mit dem Tag enden, bei dem die Tagesmaximaltemperatur unterhalb der 30 °C­Marke 

fällt. 

3 S. https://www.dwd.de/DE/leistungen/cdc/climate­data­

center.html;jsessionid=E22D2210BB9BF07236848C142304FBE1.live21061?nn=17626
4 https://de.wikipedia.org/wiki/Hitzewelle
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2.3 Zusammengeführte Dateien und Modifikationen der Ausgangsdaten 

2.3.1 Zusammenführen der Ausgangsdateien 

Fall­ beziehungsweise patientenbezogene Daten der AOK wurden über die Patienten­

Identifikationsnummer verknüpft. Anschließend wurden an jeden Falldatensatz die Klimaparameter 

des Aufnahmetages angefügt. Diese schrittweise Zusammenführung verdeutlich die folgende 

Abbildung: 

� AOKN­Falldaten 

� N = 10.908 

� Variablen k = 86 (netto) 

• Darunter bis zu 62 Diagnosen (38 leere Felder gelöscht) 

• Aufnahme­, Entlassungsdatum (Aufnahme in 2022 oder 2023) 

• Gegebenenfalls Sterbedatum 

• Patientencharakteristika: Geburtsjahr, Geschlecht, PLZ­Bereich 

� Patientenangabe zur stationären Pflege zum Stichtag 31.12.2022. 

� Wetterstation Langenhagen (DWD) 

� Reduziert auf 730 Tage (Jahre 2022 & 2023) 

� Insbesondere verschiedene Temperaturangaben 

Abbildung 2.1: Schema der Zusammenführung („Mergen“) der verschiedenen Ausgangsdateien

Letztlich resultierte aus dem Vorgehen eine erweiterte Falldatei, bei der zum einen das 

Patientenmerkmal „stationäre Pflege“ sowie zum anderen meteorologische Daten zum 

Aufnahmedatum ergänzt wurden. 

2.3.2 Falloperationalisierungen 

Unmittelbar sind für die vier Zieldiagnosen acht „Falldefinitionen“ evident: Die Nennung der 

jeweiligen Diagnosen zum einen als Hauptdiagnose, zum anderen in irgendeinem der Diagnosefelder. 

Da bei jedem einzelnen stationären Fall bis zu 62 Diagnosen aufgeführt sind, werden viele Fälle 

mehreren der vier zu betrachtenden Diagnosen zugeordnet. Insbesondere korrelieren stark 

einerseits das Auftreten der Diagnosen Niereninsuffizienz und Dehydration sowie andererseits 

Frühgeburt und vorzeitiger Blasensprung. Um die Fälle schärfer abzugrenzen, wurde bei den 

betrachteten Falldiagnosen verstärkt auf die vergebenen (eindeutige) Hauptdiagnose referenziert. 

Folgende Falldefinitionen wurden gebildet und in den nachfolgenden Analysen betrachtet:   

� Cases_Geburt  := Diagnose vorzeitiger Blasensprung oder Frühgeburt (irgendwo), 

� Cases_Geburt1 := Hauptdiagnose vorzeitiger Blasensprung oder Frühgeburt (irgendwo) 

� Cases_Geburt2 := Hauptdiagnose vorzeitiger Blasensprung oder Hauptdiagnose Frühgeburt 

� Cases_Niere  := Diagnose Niereninsuffizienz oder Dehydration (irgendwo) 

� Cases_Niere1  := Hauptdiagnose Niereninsuffizienz oder Dehydration (irgendwo) 

� Cases_Niere2  := Hauptdiagnose Niereninsuffizienz oder Hauptdiagnose Dehydration 

Mergen 

via 

PatID 

Mergen 

via 

Datum 
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2.3.3 Verdichtung der fallbezogenen Daten auf Dateien zu Fallhäufigkeiten pro Tag 

Während die in Kapitel 2.3.1 beschriebene Datei nach wie vor fallbezogen war, i.e. ein Fall pro Zeile, 

erforderten einige Analysen tagesbezogene Daten, i.e. pro Zeile ist ein Tag mit aufgetretenen 

Fallhäufigkeiten sowie Tagestemperaturen wiedergegeben. 

Hierzu musste die Falldatei entsprechende für die jeweils zu betrachtenden Fällen – abhängig von 

den Falldefinitionen aus Kapitel 2.3.2 wie auch für verschiedenen Patientencharakteristika 

(Altersgruppe, Pflegestatus) ­ verdichtet werden. Hierbei war darauf zu achten, dass auch Tage, bei 

denen keine der Fälle aufgetreten sind, dennoch (mit 0 Fällen) aufgeführt sind.  

Die folgende Abbildung zeigt einen Ausschnitt aus einer derartigen tagesbezogenen Datei, wobei die 

Variable „Cases“ die Anzahl der jeweiligen Fälle pro Tag – abhängig von der verwendeten 

Falldefinition ­ angibt: 

Abbildung 2.2: Tagesbezogene Auswertedatei ­ Auszug 
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3. Methoden 
Da vorab keine Hypothesen formuliert wurden, sondern die spezifischen Auswertemöglichkeiten 

selbst anhand des Probedatensatzes im Rahmen der Pilotphase noch evaluiert werden sollten, war 

eine detaillierte Powerkalkulation im engeren Sinne vor dem Projektstart nicht notwendig. 

Neben deskriptiven Verfahren und der Darstellung der Fallzahlen in geglätteten Verlaufskurven 

werden verallgemeinerte Lineare Modelle verwendet, auch um den Einfluss von Patienten­ oder 

auch Versorgungscharakteristika zu berücksichtigen. Schließlich sind (komplexe) Modelle für den 

Beleg von Temperatureffekten notwendig; eine reine Betrachtung von Verlaufskurven ist nicht 

zielführend, da eine nicht­hypothesengeleitete retrospektiven Betrachtung derartiger Verläufe 

beliebig interpretiert werden können. A priori aufgestellte Modelle erlauben hingegen die 

unverzerrte Schätzung von Effekten.  

Bei den Modellen ist zu unterscheiden, ob sie auf die ursprüngliche Falldaten selbst oder aber auf die 

aggregierten tagesbezogenen Fallzahlen (s. Kapitel 2.3.3) angewendet werden.  

Für den ersten Fall können über den Case­Crossover­Ansatz logistische Regressionsmodelle 

berechnet werden, der zweite Ansatz wird anhand von Regressionsmodelle für eine Zeitreihe von 

Zähldaten, insb. der Poissonregression, aufgegriffen. Beide Ansätze sind grundsätzlich in ihren 

Ergebnissen weitgehend äquivalent (Tong, 2021). 

3.1 Case­Crossover­Ansatz 

Die Idee hinter diesem Ansatz ist, dass die potentiellen Einflussgrößen zum Zeitpunkt des Falles mit 

denen von „Eigenkontrollen“ derselben Person zu anderen Zeitpunkten verglichen werden mit der 

impliziten Fragestellung: „Warum tritt das Krankheitsereignis bei der Person gerade zu diesem 

Zeitpunkt auf und nicht früher oder später?“. Zeitunabhängige persönliche Merkmale werden dabei 

durch die Eigenkontrolle heraus konditioniert. Die mit diesem Ansatz verknüpfte Auswerteroutine ist 

die der bedingten logistischen Regression. Die Regressoren sind dabei zeitabhängig, wie eben 

Temperaturdaten. 

Zentral für diesen Ansatz ist die Wahl der zeitlichen Eigenkontrolle: Werden zu große Zeitabstände 

gewählt, ist die Annahme, dass Patientencharakteristika zu den beiden Zeitpunkten als identisch 

anzunehmen sind und somit heraus konditioniert werden können, kritisch zu hinterfragen, bei zu 

kurzen Zeitperioden können systematische Verzerrungen die Folge sein. Hier wäre beispielsweise 

darauf zu achten, dass Einweisungs­ und Kontrolltag auf denselben Wochentag fallen. Grundsätzlich 

ist auch zu hinterfragen, ob die Kontrollen zeitlich vor­ oder nachgelagert sind. Bei der Analyse von 

Mortalitätsdaten sind zeitlich nachgelagerte Kontrollzeitpunkt beispielsweise nicht sinnvoll. Die 

Abbildung 3.1 illustriert die Problematik. 

Für die beiden Zieldiagnosen vorzeitiger Blasensprung sowie Frühgeburt, die beide den 

„Gesundheitszustand Schwangerschaft“ voraussetzen, da die Dauer der Schwangerschaft 

beziehungsweise der Entwicklungsgrad des Fötus abhängt, erscheint der Ansatz aus inhaltlichen 

Gründen weniger geeignet zu sein.  
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Abbildung 3.1: Strategien zur Auswahl von Kontrolltagen bei einer Case­Crossover Studie (Wu, 2021) 

3.2Poisson­Regressionen für Zeitreihen

Im Rahmen von verallgemeinerten Linearen Modellen werden die täglichen (logarithmierten) 

Fallzahlen als Regressand in Abhängigkeit von verschiedenen Einflussgrößen, den Regressoren, 

modelliert. Die einfachste Verteilungsannahme für Zähldaten bei seltenen Ereignissen ist die 

Annahme von Poisson­verteilten Fallzahlen; die Poisson­Verteilung ist einparametrisch und 

Erwartungswert und Varianz sind identisch.  

Werden die Fallzahlen zusätzlich zur zeitlichen Auflösung auch bezüglich einer 

Stratifizierungsvariable, wie etwa regionalen Einheiten, aufgelöst, führt dies zur folgenden 

Modellierung: 

� Annahme: Yts ∼Poisson(µts), Modell: log(µts) = β0s + βxt, t = 1 .. T, s = 1 …S. Hierbei sind: 

� Yts = Anzahl der Fälle zum Zeitpunkt t im Stratum s. Insgesamt T Zeitpunkte sowie S 

Strata. 

� β0s = Interzept (Ordinatenabschnitt oder Absolutglied) für Stratum s  

� ß Vektor der Effekte für die zeitabhängenden Regressoren xt, insbesondere für:  

� Variablen für die interessierende Exposition (zum Beispiel Temperatur),  

� ggf. Spline (geglättete Verläufe) über zurückliegende Temperaturen,  
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� sonstige zeitabhängige Größen z.B. Wochentag, Schulferien, Quartal.   

Um überhaupt eine Aussage darüber zu treffen, ob es eine Temperaturabhängigkeit der Fallzahlen 

gibt, ist der Vergleich der Vergleich der Anpassungsgüte von Modellierungen mit beziehungsweise 

ohne Temperaturvariablen möglich.  

Ein grundsätzliches Problem besteht dabei darin, dass die täglichen Fallzahlen in der Regel nicht 

stochastisch unabhängig sind. Insofern kann auf Modelle für Zeitreihen zurückgegriffen, die die 

Verwendung allgemeinerer Korrelationsstrukturen, insbesondere Autokorrelationen, ermöglichen 

oder aber es wird versucht, die Autokorrelation über die Regressoren – so sind auch die 

Temperaturdaten autokorreliert ­ zu erklären mit dem Ziel, dass die Residuen des 

Regressionsmodells als stochastisch unabhängig angenommen werden können.  

Ein weiteres Problem besteht in einer möglichen Überdispersion (engl. „Overdispersion“): Sie liegt 

vor, wenn die empirische Varianz in einem Datensatz größer ist als die von dem verwendeten 

statistischen Modell mitsamt dessen Annahmen vorhergesagte Streuung. (Poisson­Annahme: 

Identität von Erwartungswert und Varianz). Dies deutet darauf hin, dass das Modell die Daten nicht 

ausreichend erklärt, etwa auf Grund von extremen Einzelwerten oder einer falschen 

Modellspezifikation. Eine mögliche Überdispersion kann aber auch in Poisson­Modellen korrigiert 

werden (� quasi­Poisson­Modelle). Alternativ kann man auch eine andere Verteilungsannahme für 

die Zähldaten heranziehen, insbesondere die einer negativen Binomialverteilung.   

Gerade bei sehr vielen einzelnen Strata ist die Schätzung des β0s – Vektors aufwändig und wenig 

informativ. Durch Konditionierung wird er im Rahmen der konditionalen Poissonregression als 

Störparameter (engl. „nuissance parameter“) nicht geschätzt. So verglich Weinberger, 2021, Tage mit 

und ausgewählte vergleichbare Tage ohne Hitzewarnung bezüglich allgemeiner Mortalität wie auch 

spezifischer stationärer Aufnahmen. Als Stratifizierungsvariable fungierte dabei als regionale Einheit 

„County“ ­ insgesamt 2817. Hierzu wurden für die Jahre 2006 – 2016 92.029 Tage mit 

Hitzewarnungen (in 2.817 Counties) ausgewählte vergleichbare Tage ohne Hitzewarnung hinzu 

gematcht.  

Während bei Weinberger, 2021, die Zahl der Strata sehr hoch ist, so dass eben die Schätzung 

einzelner stratumspezifischer Parameter unsinnig erscheint, ist bei wenigen Strata die unbedingte 

Poissonregression alternativ zu der konditionalen möglich.  

Bedingte logistische wie bedingte und unbedingte Poissonregression hat Armstrong, 2014, 

vergleichend untersucht. Hierbei wurden primär Effekte der Luftverschmutzung die Mortalität in 

London in den Jahren 2002 – 2006, analysiert, wobei auch Temperatur als erklärende Variable mit in 

das Modell aufgenommen wurde. Als Stratums­Variable wurde hier die Kombination aus Wochentag, 

Monat und Jahr gewählt – bei 5 Jahren in der Summe 420 Strata. Konditionale Poissonmodelle ohne 

Korrekturen bezüglich Autokorrelation und Überdispersion zeigten im Vergleich zu den anderen 

beiden Schätzansätzen keine wesentlichen Unterschiede bei den geschätzten Effekten der primär 

interessierenden Einflussgrößen. Erst mit der Kontrolle von Überdispersion und Autokorrelation 

zeigten sich Unterschiede.   

Grundsätzlich erlauben (konditionale) Poisson Modelle es für Überdispersion sowie Autokorrelation, 

in den Zählerdaten zu adjustieren, was bei einer konditionalen logistischen Regression nicht möglich 

ist.  Die Effektschätzungen sowohl vom Case­Crossover Ansatz wie von Poisson­Zeitreihenmodelle 

sind ansonsten konsistent und vergleichbar (Tong, 2012; Armstrong, 2014; Lu, 2007; Levy, 2001). 
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3.3  Auswertungsstrategie 

In den letzten Jahren wurde in verschiedenen europäischen Ländern die Mortalität in Hitzeperioden 

analysiert. Erfahrungen aus Großbritannien (Green, 2012) haben gezeigt, dass mit auf wöchentlichen 

Todesfallzahl basierenden Modelle über wenige Tage währende Hitzepeaks in ihren Wirkungen nicht 

aufgedeckt werden konnten, während eine tägliche Auflösung de Fallzahlen deutlich die 

Übersterblichkeit aufzeigt. Im Rahmen der Italienische Mortalitätssurveillance (Michelozzi, 2010; 

Issa, 2021) wurde insbesondere die Notwendigkeit von auf spezifische regionale Einheiten 

ausgerichtete Analysen nahegelegt. In Deutschland wurden in der hitzebedingten Mortalitätsstatistik 

vom RKI zunächst wöchentlich aggregierte Fallzahlen betrachtet (Winklmayr 2022a, 2022b), wobei 

nunmehr ebenfalls die entsprechenden generalisierten Linearen Modelle auf tagesbezogene 

Todeszahlen abzielen; ein entsprechender Methodenbericht wurde während der Laufzeit von 

AnKliMM veröffentlicht (an der Heiden, 2025a).    

Daher wurde auch für die Morbidität bei AnKliMM tagesbezogene Fallzahlen betrachtet. Es wurden 

bedingte Poisson­Modellierungen favorisiert, da sie es erlauben, für Überdispersion sowie 

Autokorrelation in den Zählerdaten zu adjustieren.  

Dafür mussten die Daten zunächst verdichtet werden: Statt einer Datei mit einzelnen Falldaten, i.e. 

der Beobachtungseinheit mit der Fall­ID, werden die Tage selbst als Beobachtungseinheiten pro 

Stratum betrachtet, incl. der jeweiligen täglichen Fallhäufigkeit in den Strata.  

Allein die Entscheidung für den grundsätzlichen Modellierungsansatz ist für die Modellbildung 

allerdings nicht hinreichend. Folgende Fragen waren und sind zum Teil noch zu beantworten: 

� Welche Fälle sollen betrachtet werden? 

� Neben der eigentliche Falldefinition (vgl. Kapitel 2.3) können auch zusätzlich 

Patientencharakteristika – etwa zur Altersgruppe oder der Angabe zur stationären 

Pflege – bei der Fallzählung miteinfließen. 

� Welche Funktion der Hitze zum Zeitpunkt t beziehungsweise der vorangegangenen Tage (t ­ 1, 

.., t – k.) ist zu wählen?  

� Die Temperatur kann kategorial betrachtet werden, zum Beispiel die dichotome 

Angabe „Maximaltemperatur am Tag über 30 Grad“ oder stetig. Auch mögliche 

Temperaturangaben zu den vorangegangenen Tagen oder auch die Angabe zu 

bereits voran gegangenen Hitzeperioden sind möglich:  

� Auch die funktionale Form ist mitendscheidend, ob ein relevanter und/oder ein 

statistisch signifikanter „Hitzeeffekt“ aufgedeckt werden kann. Hierzu gibt es diverse 

Alternativen – sowohl auf die aktuelle Temperatur anwendbar wie auch auf 

Vortagestemperaturen ­ , z.B. : 

� Schwellenwertmodelle, 

� Modellierung eines (log­)linearer Zusammenhang, 

� Polynome Zusammenhangskurven oder auch Splines? 

� Welche zusätzlichen von der Zeit abhängenden Faktoren müssen berücksichtigt 
werden?  

� Etwaige Saisoneffekte (Haupturlaubszeit) oder auch 

� Angaben zu Luftschadstoffen. 

Bei der Berücksichtigung von Vortagestemperatur(en) oder auch nach bereits vorangegangenen 

Hitzeperioden besteht die Frage, wie viele verzögerte Effekte eingebaut werden. Gerade bei der 
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Mortalität ist die Frage einer vorangegangenen Hitzeperiode entscheidend: Schließlich könnte diese 

zu einem Mortalitätspeak geführt haben, so dass die Zahl der vulnerablen Personen bei einer 

nachfolgenden aktuellen Hitzeperiode zu gering ist, um einen weiteren Mortalitätsanstieg zu 

identifizieren.  

Als Auswertungsstrategie wurde mit recht einfachen Modellen gestartet, die noch erweitert werden 

müssen, etwa durch die Annahme von polynomialen statt eines rein linearen Zusammenhanges oder 

die Einführung von zeitlich verzögerten sowie saisonalen Effekten.  

Als Stratifizierungsvariable wurde die regionale Einheit gewählt: Die Landkreise bilden die einzelnen 

Strata, dabei wird die Region Hannover noch unterteilt in die Stadt Hannover und den ehemaligen 

Landkreis. Somit ergeben sich sechs Strata.  
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4. Empirische Ergebnisse 
Insgesamt gab es 2022 und 2023 10.908 Fälle im Untersuchungsgebiet, die eine der vier Diagnosen 

als Haupt­ oder Nebendiagnose hatten: 

Tabelle 4.1: Fallzahlen der originären vier Zieldiagnosen 

Diagnose 

irgendwo 

Als Haupt­

diagnose 

Anteil der 

Hauptdiagnosen

Frühgeburt (ICD­10 O60.1 & O60.3) 549 143 26,0 %

vorzeitiger Blasensprung (ICD­10 O42) 2910 1465 50,3 %

Niereninsuffizienz (ICD­10 N17) 7694 847 11,0 %

Dehydration / Volumenmangel (ICD­10 E86) 1999 660 33,0 %

Mindestens eine der vier Diagnosen 10908 3115 28,6 %

Insbesondere Niereninsuffizienz ist dabei häufig mit 89 % nur als Nebendiagnose angegeben. 

Frühgeburt und vorzeitiger Blasensprung korrelieren stark miteinander, ebenso wie 

Niereninsuffizienz und Dehydration. Die Fallzahlen der zusammengesetzte Falldefinitionen (s. Kapitel 

2.3) sind: 

� Cases_Geburt:   3217 

� Cases_Geburt1:  1890 

� Cases_Geburt2: 1608 

� Cases_Niere:  7703 

� Cases_Niere1:  2513 

� Cases_Niere2:   1032 

4.1 Grafische Visualisierung ­ Verlaufskurven 

Einen ersten Eindruck eines möglichen Zusammenhanges zwischen der Tagestemperatur und der 

Häufigkeit von Fällen mit Dehydration oder Niereninsuffizienz (insgesamt sowie eingeschränkt auf 

„Notfälle“, i.e. nicht­elektive Fälle) vermittelt die folgende Abbildung, bei der Temperatur und 

Fallzahl über die Sommermonate 2022 geglättet abgetragen wurden.  

Optisch scheinen die Peaks bei den Fallzahlen beziehungsweise der Tagestemperatur auf ähnliche 

Zeiträume zu fallen, wobei dies aber nicht über den ganzen Zeitraum konsistent erfolgt. 
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Abbildung 4.1: Ausschnitt Mai – Oktober 2022. Aufgetretene Nierenfälle (7­Tages­Mittel: (Cases_Niere): alle Fälle 

(rote Linie) beziehungsweise eingeschränkt auf Notfälle (blaue Linie)) sowie Tagestemperatur (grüne­Linie; 2. Y­

Achse).  

Die nächste Abbildung zeigt exemplarisch, dass Patientencharakteristika ebenso wie die zu Grunde 

gelegte Falldefinition entscheidend sind, um einen möglichen Einfluss von Wetterparametern wie der 

Tagestemperatur aufzuzeigen: 

Abbildung 4.2: zeitliche Häufigkeit von Nierenfällen und Verlauf der Tagestemperatur (7­Tages­Mittel) – Einfluss 

verschiedener Falldefinitionen sowie Patientencharakteristika 

Bei der Abbildung 4.2, links – eingeschränkt auf die älteste Altersgruppe – treten im Vergleich zu der 

Altersgruppe der 65­ bis 85­jährigen nicht nur mehr Fälle auf, sondern die Ausschläge sind auch 

deutlicher. Die restriktivere Falldefinition (Cases_Niere2) weist insgesamt entsprechend weniger 

Fälle als die andere Falldefinition auf.  

Kritisch bei diesen Verlaufskurven ist anzumerken, dass man bei der Betrachtung automatisch nach 

optischen Mustern sucht, beispielsweise (zeitlich verzögerte) Übereinstimmungen zwischen 

Temperaturspitzen und den Einweisungshäufigkeiten; mangelnde Übereinstimmungen werden 

hingegen nicht wahrgenommen. Die Wahrnehmung ist quasi durch die implizite explorative Analyse 
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verzerrt – erst mit a priori formulierten Erwartungen an die Form von Übereinstimmungen ließe sich 

der Wahrnehmungsbias begegnen.  

4.2 modellgestützte Auswertungen – konditionierte Poissonmodelle 

Um die Frage nach einem Temperatureffekt auf stationäre Versorgungsleistungen anzugehen, wurde 

zunächst der in der Abbildung 1.2 dargestellte Modellansatz von Mortalitätsdaten auf die AnKliMM­

Projektdaten zu stationären Aufnahmen übertragen: Die Fallzahlen wurden dabei im Rahmen von 

Zeitreihenmodelle für Zähldaten in Abhängigkeit der Tagestemperatur sowie anderer zeitabhängigen 

Größen wie Quartal oder Wochentag modelliert. In einem ersten Ansatz wurde die Temperatur – 

analog zu der Abbildung 1.2 aus Zacharias, 2012 ­ gemäß „Grad unter 20o“ sowie „Grad über 20o“ 

(„Hitzeeffekt“) berücksichtigt und auf konditionierte Poissonmodelle mit der Stratifizierungsvariable 

Landkreis (+ Stadt Hannover) übertragen.   

Für die diversen Kombinationen aus Falldefinitionen sowie Patientencharakteristika wurden 

entsprechende Dateien mit Tagespaneldaten generiert. Die täglichen Fallzahlen (pro Stratum, i.e. 

Landkreis) wurden im Rahmen der einfachen konditionaler Poisson­Modelle in Abhängigkeit der 

folgenden Regressoren modelliert (vgl. Kapitel 3.4): 

� Stetiger Hitzeeffekt (1 df): Falls der Durchschnitt der aktuellen sowie der 

Vortagesdurchschnittstemperatur oberhalb von 20 Grad liegt: Differenz zwischen 

Durchschnittstemperatur und 20, ansonsten Null.  

� Stetiger Kälteeffekt (1 df):  Falls der Durchschnitt der aktuellen sowie der 

Vortagesdurchschnittstemperatur unterhalb von 20 Grad liegt: Differenz zwischen 20 und 

der Durchschnittstemperatur, ansonsten Null.    

� Kategoriale Variable für den Wochentag (6 df).  

� Kategoriale Variable für das Quartal (3 df). 

� Kategoriale Variable für das Jahr (1 df). 

Die zunächst recht einfachen Modellierungen von Hitze­ und Kälteeffekt erfolgen somit analog zu 

Abbildung 1.2, wobei nicht allein die aktuelle Tagestemperatur, sondern auch die 

Vortagestemperatur miteinbezogen wurde. Ein Wochentageffekt – insbesondere im Unterschied 

zwischen Wochentag und Wochenende – sollte sich insbesondere bei elektiven Patienten zeigen. 

Über die Quartals­ wie Jahreseffekte wird nicht allein ein allgemeiner zeitlicher Trend aufgefangen, 

sondern auch etwaige Verschiebungen bei dem zu Grunde liegenden Nenner, i.e. den 

Versichertenzahlen in der Region über die Zeit. 

Bei den bedingten konditionalen Poissonmodellen werden insgesamt somit 4380 Beobachtungen 

betrachtet – 730 Tage5 mal 6 Strata. Die Verteilung der täglichen Fallzahlen illustriert am Beispiel von 

Cases_Niere1 die folgende Tabelle:  

5 Da die Temperatur als Durchschnitt der heutigen und gestrigen Temperatur in das Modell einfloss, wurden de facto nur 

729 „Beobachtungstage“ betrachtet.
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Tabelle 4.2.: Tägliche Nierenfälle (für Niere_Cases1) – insgesamt und nach Regionen.  

Cases_Niere1 Stadt 

Hannover 

Braun­

schweig 

Salz­

gitter 

Peine Wolfen­

büttel 

Region 

Hannover 

(ohne 

Stadt 

Hannover) 

Gesamt (alle 

Landkreise) 

Fälle gesamt 715 1176 630 698 503 805 2513

Fälle pro Tag: Mittelwert 

(Varianz) 

0,980 
(0,969) 

0,556 
(0,546) 

0,223 
(0,220) 

0,299 
(0,295) 

0,279 
(0,270) 

1,103 
(1,179) 

3,442 
(3,830) 

Tage mit.. (6*730 Tage)

0 Fällen 272 415 583 542 550 242 2604

1 Fällen 269 236 132 132 157 277 1230

2 Fällen 139 67 14 14 22 135 405

3 Fällen 35 10 1 1 1 57 105

4 Fällen 12 2 0 0 0 14 28

5 Fällen 3 0 0 0 0 0 3

6 Fällen 0 0 0 0 0 4 4

7 Fällen 0 0 0 0 0 1 1

Beim Vergleich des Mittelwertes und der Varianz der täglichen Fallzahlen ist eine geringe 

Überdispersion allein bei der Betrachtung über alle Landkreise zu erkennen, allerdings nicht bei 

Betrachtung der einzelnen Landkreise. Insofern erscheint die Annahme einer einfachen 

Poissonmodellierung ohne Korrektur von Überdispersion vertretbar, insofern die Landkreise als 

Strata modelliert werden.   

Die Tage mit null Fällen führen bei der Autokorrelationskorrektur nach Brumback zu fehlenden 

Werten – insofern war sie in den folgenden Beispielrechnungen nicht sinnvoll anwendbar, um 

Änderungen in den Effektschätzungen aufzudecken. 

Je stärker die Falldefinition spezifiziert ist – sei es mit der Einschränkung auf Hauptdiagnosen, bei der 

Beschränkung auf stationäre Pflegefälle, auf die über 85jährigen und/oder auf Notfälle – desto 

häufiger treten Datensätze mit null Fällen (pro Tag und Landkreis) auf. 

4.2.1 konditionierte Poissonmodelle für Nierenfälle 

In den modellgestützten Auswertungen zeigte sich, dass für Notfallpatienten mit den Hauptdiagnose 

Dehydration oder Niereninsuffizienz mehr stationäre Aufnahmen pro Grad Außentemperaturanstieg 

erfolgten, der Effekt auf das „Incidence Rate Ratio“ (IRR) betrug rund 6 Prozent pro Grad; der 

geschätzte „Kälteeffekt“ ist demgegenüber mit 1 % deutlich geringer ausgeprägt.  
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Abbildung 4.1: STATA­Output für das Modell für die Falldefinition Niere_Cases2; nur Notfallpatienten. 

Der Hitzeeffekt „Th_Hitze“ weist mit einem p­Wert von 0,071 einen üblicherweise als statistisch 

grenzwertig eingestuften Effekt auf. Statistisch belastbarer ist aber vor allem der Wochentageffekt 

(Referenzkategorie: Sonntag): Auch unter den Ausschluss der elektiven Fälle erkennt man hier den 

Wochenendeffekt, i.e. weniger Aufnahmen am Samstag wie auch am Sonntag. Der Quartalseffekt 

zeigt sich dahingehend, dass im ersten Quartal vergleichsweise mehr Fälle eingewiesen wurden.  

Eine Überdispersion liegt nicht vor (Schätzung 1,01).  

Bei der Beschränkung auf Patienten von >85 Jahren scheinen die Effekte, dargestellt als IRR = 

„Incidence Rate Ratio“, noch ein wenig ausgeprägter zu sein (s. Tabelle 4.3), doch hier sind die 

statistischen Modelle aufgrund der Vielzahl der nicht­besetzten Zellen (Tag x Landkreis) als instabil 

einzustufen. Der p­Wert für den Hitzeeffekt erhöht sich, trotz geringfügig erhöhtem Effektschätzer, 

von 0,071 auf 0,272. Auch hier finden sich keine Hinweise auf Überdispersion oder eine Abhängigkeit 

der Effektschätzer von einer Autokorrelation. 
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Abbildung 4.2: STATA­Output für das Modell für die Falldefinition Niere_Cases; nur Notfallpatienten. 

Durch diese unscharfe Falldefinition und die damit einhergehenden höheren Fallzahlen ist der 

Standardfehler, und darüber auch der p­Wert, kleiner als im vorherigen Modell (Abbildung 4.1). 

Allerdings sind die Effektschätzer selber weniger ausgeprägt. So weist zwar der Kälteeffekt einen p­

Wert von 0,033 (< 0,05) auf, jedoch ist der Effekt selbst mit 1,0066 deutlich geringer als im 

vorherigen Modell mit 1,0108. 

Eine mögliche Autokorrelation wurde für die allgemeinste Falldefinition – i.e. Nieren_Cases ohne 

Einschränkung der Patienten – mitmodelliert. Der Schätzer für den Autokorrelationseffekt war zwar 

weder statistisch auffällig noch wurden die Effektschätzer der Temperaturvariablen wesentlich 

geändert, doch selbst hier wurden 1184 Daten aufgrund fehlender Werte nicht berücksichtigt, so 

dass die Modelle mit versus ohne Autokorrelationskorrektur nicht wirklich vergleichbar sind. Eine 

mögliche Autokorrelation kann aber grundsätzlich auch über verzögerte Effekte, insbes. 

Vortagestemperaturen, aufgefangen werden.  

Die folgenden Tabellen 4.3 bis 4.5 fassen die Temperatureffekte für jeweils 12 verschiedene Modelle 

zusammen in den Kombinationen aus drei Falldefinitionen, dem Patientencharakteristikum für „Alter 

größer gleich 85 Jahre“ sowie der Indikatorvariablen für „Notfall“ (nicht elektive Fälle), gebildet aus 

den Variablen für den Aufnahmegrund. Hierbei sind geschätzten Effekte, die größer als 5 % pro Grad 

ausfallen, in den Tabellen grün hinterlegt, p­Werte kleiner 0,1 hingegen rot.  

Grundsätzlich zeigt sich, dass sich die Effektschätzungen deutlich relativieren, wenn auch elektive 

Aufnahmen berücksichtigt (s. Tabelle 4.3) oder auch Nebendiagnosen bei der Falldefinition 

zugelassen werden, i.e. wenn die Fallabgrenzung „unschärfer“ wird.  
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Tabelle 4.3: Ergebnisübersicht: Einstiegsmodelle für Nierenfälle; erklärende Variablen: Temperatur > 20 Grad 

(Effekt Hitze), Temperatur < 20 Grad (Effekt Kälte), Wochentag, Quartal, Jahr. 

Cases_Niere Cases_Niere1 Cases_Niere2

Alter 85+ x x x x x x

Notfall x x x x x x

# mind. 1Fall / Tag, 
Panel (max = 4320)

3201 1469 2912 1320 1165 638 1061 580 890 275 786 257

Effekt Hitze pro 
Grad (IRR) (p­Wert)

1.001 

(.947) 

1.012 

(.712) 

1.003 

(.890) 

1.012 

(.742) 

.998 

(.959) 

1.053 

(.293) 

1.002 

(.966) 

1.058 

(.268) 

1.058 

(.187) 

1.057 

(.469) 

1.084 

(.071)

1.088 

(.272) 

Effekt Kälte pro 
Grad (IRR) (p­Wert)

1.005 

(.062)

1.006 

(.300) 

1.007 

(.033)

1.006 

(.342) 

1.013 

(.042)

1.013 

(.152) 

1.013 

(.061)

1.013 

(.155) 

1.010 

(.182) 

1.021 

(.153) 

1.011 

(.189) 

1.013 

(.391) 

Überdispersion .99 .99 .99 .98 1.01 1.02 1.01 1.03 1.01 .97 1.01 .98

Für die zuweilen geäußerte These, dass gerade Pflegeheimbewohnende besonders stark von Hitze 

betroffen seien, konnten in der vorliegenden Untersuchung keine Belege gefunden werden.  Im 

Gegenteil: Bei den Fällen aus stationären Pflegeeinrichtungen beträgt der oben genannte Effekt für 

Dehydration beziehungsweise Niereninsuffizienz nur 4 % gegenüber 10 % mehr Fällen pro Grad 

Temperaturanstieg bei Patienten, die nicht in stationären Pflegeeinrichtungen leben.  

Tabelle 4.4: Ergebnisübersicht: Einstiegsmodelle für Nierenfälle von stationären Pflegefällen; erklärende 

Variablen: s. Tabelle 4.3.  

Cases_Niere Cases_Niere1 Cases_Niere2

Alter 85+ x x x x x x

Notfall x x x x x x

# mind. 1Fall / Tag, 
Panel (max = 4320)

992 503 895 465 367 234 338 217 1165 638 1061 580

Effekt Hitze pro 
Grad (IRR) (p­Wert)

.925 

(.101) 

.929 

(.307) 

.932 

(.157) 

.930 

(.324) 

.857 

(.097)

.910 

(.391) 

.889 

(.202) 

.922 

(.452) 

.998 

(.959) 

1.053 

(.293) 

1.002 

(.966) 

1.058 

(.268) 

Effekt Kälte pro 
Grad (IRR) (p­Wert)

.996 

(.547) 

.996 

(.671) 

.997 

(.669) 

.994 

(.573) 

1.001 

(.933) 

1.008 

.595) 

1.002 

(.851) 

1.010 

(.530) 

1.013 

(.042)

1.013 

(.152) 

1.013 

(.061)

1.013 

(.155) 

Überdispersion .98 1.02 1.00 1.00 1.05 1.04 105 1.04 1.01 1.02 1.01 1.03

Bei der singulären Betrachtung besteht wieder das Problem, dass mit kleinen Fallzahlen operiert 

werden muss, was insbesondere auch die Verwendung komplexerer Modelle einschränkt. 

Tabelle 4.5: Ergebnisübersicht: Einstiegsmodelle für Nierenfälle ­ ohne stationäre Pflegefälle; erklärende 

Variablen: s. Tabelle 4.3.  

Cases_Niere Cases_Niere1 Cases_Niere2

Alter 85+ x x x x x x

Notfall x x x x x x

# mind. 1Fall / Tag, 
Panel (max = 4320)

2978 1121 983 1509 439 1350 394 746 184 637 162

Effekt Hitze pro 
Grad (IRR) (p­Wert)

1.014 

(.431) 

1.040 

(.291) 

1.017 

(.418) 

1.042 

(.304) 

1.047 

(.137) 

1.106 

(.068)

1.056 

(.107) 

1.115 

(.061)

1.074 

(.134) 

1.078 

(.419) 

1.096 

(.067)

1.125 

(.201) 

Effekt Kälte pro 
Grad (IRR) (p­Wert)

1.007 

(.023)

1.010 

(.135) 

1.009 

(.011)

1.010 

(.131) 

1.010 

(.058)

1.015 

(.179) 

1.011 

(.059)

1.015 

(.204) 

1.012 

(.177) 

1.030 

(.107) 

1.012 

(.198) 

1.020 

(.309) 

Überdispersion .98 1.02 1.00 1.00 1.05 1.04 105 1.04 1.01 1.02 1.01 1.03

Zusammenfassend sind die allein auf die stationären Pflegefälle bezogenen Modelle zu instabil. 

Plausible Effektschätzer finden sich ansonsten in Modellen für Niere_Cases1 sowie Niere_Cases2. Die 

Betrachtung von Patienten, die bei denen nur Niereninsuffizienz als Nebendiagnose angegeben ist, 

erscheint im Temperaturkontext nicht sinnvoll zu sein; gerade bei älteren Patienten ist 

Niereninsuffizienz eine „alltägliche“ (Neben­) Diagnose.  

Die Beschränkung auf die älteste Altersgruppe erscheint sinnvoll, da hier stärkere Temperatureffekte 

als bei jüngeren Versicherten erwartet werden können. Mithin sind insbesondere die Modelle für die 

folgenden Patientengruppen in ihren Schätzungen plausibel (wenn auch nicht statistisch signifikant):  
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� Hauptdiagnose Niereninsuffizienz oder Dehydration; Notfälle – alle Patienten 

� Hauptdiagnose Niereninsuffizienz oder Dehydration irgendwo; bei Patienten 85+  

� Hauptdiagnose Niereninsuffizienz oder Dehydration irgendwo; bei Patienten 85+; nur 

Notfälle 

4.2.2 Konditionierte Poissonmodelle für Geburtsereignisse 

Bei den Modellen für frühzeitigen Blasensprung und/oder Frühgeburt wurden die Patientinnen nicht 

bezüglich des Alters näher stratifiziert. Insofern reduzieren sich die Modelle auf sechs 

Patientinnengruppen. Auch die Betrachtung speziell von stationären Pflegefällen entfällt hier 

naheliegenderweise. 

Tabelle 4.6: Ergebnisübersicht: Einstiegsmodelle für Geburtsereignisse; erklärende Variablen s. Tabelle 4.3.  

Cases_Geburt Cases_Geburt1 Cases_Geburt2

Notfall x x x

# mind. 1Fall / Tag, 

Panel (max = 4320) 

1911 1052 1374 735 1208 637

Effekt Hitze pro 

Grad (IRR) 

.982 
(.458) 

.984 
(.674) 

.977 
(.478) 

.974 
(.586) 

.986 
(.687) 

.967 
(.527) 

Effekt Kälte pro 

Grad (IRR) 

.993 
(.112) 

.999 
(.834) 

.989 
(.050)

1.000 
(.956) 

.993 
(.230) 

1.001 
(.922) 

Overdispersion 1.04 1.04 1.04 1.03 1.04 1.04

Bei den Geburtsereignissen zeigen sich in diesen Analysen keine Hinweise für einen Zusammenhang 

der Häufigkeit von stationären Aufnahmen mit der Außentemperatur. 

4.3 Sensitivitätsanalysen und Fazit für das weitere Vorgehen 

Während in 4.2 verschiedene Falldefinitionen und Patientencharakteristika in den Modellen 

aufgegriffen wurden, wurde in weiteren Sensitivitätsanalysen die Stabilität der Modelle mit Bezug 

auf den betrachteten Zeitraum analysiert. Hierzu wurden die Nierenfälle mit Hauptdiagnose 

Niereninsuffizienz oder Dehydration (i.e. Cases_Niere2) näher betrachtet, und zwar für die folgenden 

Zeiträume: 

� Es wurde allein das dritte Quartal betrachtet, mithin allein die Schwankungen in den 

Aufnahmezahlen während der Sommermonate. 

� Es wird der Zeitraum ab dem 01.04.22 betrachtet. Damit wird die letzte größere COVID­Welle 

ausgeschlossen. 

Tabelle 4.7: Notfälle mit Hauptdiagnose Niereninsuffizienz oder Dehydration. Gesamter Zeitraum versus 

Sommermonate; erklärende Variablen s. Tabelle 4.3.  

Basismodell Basismodell nur Juli ­

September

Pflegeheim? Alle Nur 
stationäre 

Pflegefälle 

ohne 
stationären 

Pflegefälle 

Alle Nur 
stationäre 

Pflegefälle 

ohne 
stationären 

Pflegefälle 

# mind. 1Fall / Tag, Panel 

(max = 4380) 

786 193 637 183 46 148

Effekt Hitze pro Grad 1.084 

(.071)

1.042 

(.666) 

1.096 

(.067)

.972 

(.598)

1.057 

(.669)

.987 

(.843) 

Effekt Kälte pro Grad 1.011 

(.189) 

1.006 

(.712) 

1.012 

(.198) 

.942 

(.037) 

.900 

(.123) 

.935 

(.065) 

Aus der Tabelle 4.7 scheint hervorzugehen, dass die Beschränkung auf den Sommer die Hitzeeffekt 

über den zuvor betrachteten gesamten Zeitraum quasi nivelliert. Allerdings sind die entsprechenden 

Modelle auch als statistisch sehr instabil einzustufen. 
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Die zweite zeitliche Einschränkung – der Verzicht auf das erste Quartal 2022 – führt 

erwartungsgemäß zu geringeren Verschiebungen bei den Effektschätzungen: 

Tabelle 4.8: Notfälle mit Hauptdiagnose Niereninsuffizienz oder Dehydration. Gesamter Zeitraum versus Zeitraum 

ab 1.4.22; erklärende Variablen: s. Tabelle 4.3.  

Basismodell Basismodell ab 1.4.22

Pflegeheim? Alle Nur 
stationäre 
Pflegefälle 

Ohne 
stationären 
Pflegefälle 

Alle Nur 
stationäre 
Pflegefälle 

Ohne 
stationären 
Pflegefälle 

# mind. 1Fall / Tag, Panel 

(max = 4380) 

786 193 637 663 164 532

Effekt Hitze pro Grad 1.084 
(.071) 

1.042 
(.666) 

1.096 
(.067) 

1.085 
(.067) 

1.145 
(.211) 

1.098 
(.064) 

Effekt Kälte pro Grad 1.011 
(.189) 

1.006 
(.712) 

1.012 
(.198) 

1.011 
(.176) 

1.004 
(.816) 

1.013 
(.196) 

Eine weitere Modifikation betraf die Modellspezifikation, mithin die mitberücksichtigten Regressoren 

Jahr, Quartal und Wochentag: 

Tabelle 4.9: Notfälle mit Hauptdiagnose Niereninsuffizienz oder Dehydration ab 1.4.22; Basismodell vs. 

reduziertes Modell allein mit Temperaturvariablen als erklärende Variablen.  

Basismodell ab 1.4.22 Reduz Modell ab 1.4.22 – 

nur Temperaturvariable

Pflegeheim? Alle Nur 
stationäre 

Pflegefälle

Ohne 
stationäre 

Pflegefälle

Alle Nur 
stationäre 

Pflegefälle

Ohne 
stationären 

Pflegefälle

# mind. 1Fall / Tag, Panel 

(max = 4380) 

663 164 532 663 164 532 

Effekt Hitze pro Grad 1.085 

(.067)

1.145

(.211) 

1.098

(.064)

1.093

(.044)

1.161

(.160) 

1.101

(.052)

Effekt Kälte pro Grad 1.011 

(.176) 

1.004 

(.816) 

1.013 

(.196) 

1.011 

(.086)

.999 

(.966) 

1.012 

(.072)

Hierbei ist zu berücksichtigen, dass in diesen reduzierten Modellen die Effekte insbesondere des 

Quartals jetzt über die Temperatureffekte abgebildet werden, was die etwas ausgeprägteren 

Effektschätzer erklären könnte.  

Methodisch können die sechs regionalen Einheiten auch ohne weiteres im Rahmen von 

unkonditionierten Modellen betrachtet werden. Tatsächlich würden sich hierüber auch zusätzliche 

Modellierungsmöglichkeiten ergeben – nicht alle Hitzeeffekte müssten für alle regionalen Einheiten 

identisch sein – eine implizite Annahme der konditionalen Poissonmodellierung ­, sondern es 

könnten auch Wechselwirkungen zwischen den regionalen Einheiten und den übrigen Regressoren 

eingebaut werden.  

Da aber auch die Sensitivitätsanalysen aufgezeigt haben, wie instabil die Modelle beziehungsweise 

der zu Grunde liegende Datensatz insgesamt war, wurde auf weitere Modellierungen in der 

Pilotphase verzichtet. Immerhin konnten folgende Folgerungen gezogen werden: 

­ Effekte zeigten sich bei schärferer Diagnosestellung. Konzentration auf Hauptdiagnose ist 

nötig; zudem ist eine Fokussierung auf Notfälle und/oder alte Patienten plausibel. 

­ Überdispersion stellt bislang kein Problem dar 

­ Problematisch allerdings die vielen Null­Fälle­Tage bei kleinen Landkreisen, insofern sollten 

Landkreise für die Modelle zu größeren regionalen Einheiten zusammengelegt werden.  
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5. Diskussion und Fazit der Pilotphase 

5.1 Vollständigkeit der Fälle 

2018 und 20 19 waren die beiden Jahre seit 2016 mit deutlich den meisten der Hitze 

zugeschriebenen Verstorbenen (an der Heiden, 2025b). Insofern könnten sich in diesen beiden 

Jahren auch bei Diagnosegruppen, die im Hitzekontext diskutiert werden, höhere Morbiditätsraten 

finden. Für die Zieldiagnosen des AnKliMM­Projektes sind in der folgenden Tabelle die Häufigkeit (als 

Hauptdiagnose) in niedersächsischen Krankenhäusern von 2013 bis 2023 angeführt. Die beiden 

höchsten Fallzahlen sind jeweils rot hervorgehoben: 

Tabelle 5.1: Hauptdiagnosen der Krankenhauspatienten gemäß ICD­10; Niedersachsen (Quelle: DESTATIS ­ online­

Genesis­Datenbank (Statistik: Krankenhauspatienten: Bundesländer, Jahre, Hauptdiagnose ICD­10 (1­3­Steller 

Hierarchie)) 

Jahr E86 –

Volumenmangel 

(Dehydration) 

N17 – akutes 

Nierenversagen 

O42 ­

Vorzeitiger 

Blasensprung  

O60 –

vorzeitige 

Wehen (u.a. 

Frühgeburten 

Zum Vergleich: 

Lebendgeburten 

in 

Niedersachsen 

2013 10.778 6.135 5.358 3.730 62.879

2014 11.364 6.449 6.033 3.795 66.406

2015 11.886 6.735 7.104 3.590 67.183

2016 12.575 6.466 7.908 3.545 75.215

2017 13.146 6.519 8.240 3.407 73.020

2018 15.071 7.057 8.737 3.149 73.652

2019 13.591 7.149 8.910 3.022 73.286

2020 11.434 6.381 9.022 2.306 74.119

2021 11.934 6.195 9.600 2.108 76.441

2022 14.412 6.425 9.337 2.027 71.289

2023 13.915 5.899 9.409 1.668 67.162

Es zeigt sich, dass die beide Hitzejahre 2018 und 2019 auch für akutes Nierenversagen die 

Rekordjahre sind; bei Dehydration ist zumindest das Hitzejahr 2018 auffällig. In O42 wie O60 zeigen 

sich deutlich gegenläufige zeitliche Trends, ohne dass die Hitzerekordjahre irgendwie auffällig wären. 

Die beiden zeitlichen Trends bei O42 und O60 zeigen sich demgegenüber nicht bei der Zahl der 

Lebendgeburten; somit könnte die Ursache für die deutlichen Trends auch ein Hinweis auf eine 

veränderte Diagnosevergabe sein. O42 und die Zahl der Lebendgeborenen sind dennoch 

hochkorreliert (­ für die Jahresdaten Korrelation von 0,7258 ­), während die Diagnosegruppe O60 

jeweils negative Korrelationen zu O42 wie auch zu den Lebendgeburten ausweist.  

Von der Zahl der niedersächsischen Fälle mit entsprechender Hauptdiagnosen lässt ich auch die 

ungefähre Zahl der AOK­Fälle ableiten (implizite Annahmen: ähnliche Altersstruktur der Versicherten; 

gleichmäßige regionale Verteilung): Mit einem Bevölkerungsanteil des Untersuchungsgebietes von 

rund 22 % von ganz Niedersachsen sowie einem ungefähren AOK­Versichertenanteil von 35 % sind 

für jede Diagnose rund 7 % der niedersächsischen Fälle aus 2022 und 2023 für die Projektdaten zu 

erwarten.  

Tatsächlich finden sich 6,9 % der niedersächsischen Niereninsuffizienzfälle (Hauptdiagnose; Vgl. 

Tabelle 4.1) in den AOK­Daten, beim vorzeiten Blasensprung 7,8 %. Der Anteilswert bei der 

Frühgeburt (O60.1 sowie O60.3) ist mit 3,9 % unter dem ungefähren Erwartungswert von 7 % für die 

allerdings breiter gefasste Diagnosegruppe frühzeitige Wehen (O60); dies erscheint ebenfalls 

plausibel.  
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Allerdings ist der Anteilswert der AOK­Versicherten an allen niedersächsischen Fällen bei 

Dehydration mit 0,7 % deutlich zu niedrig. Hier könnte bei der Filterziehung oder der 

Datenaufbereitung ein bislang nicht identifizierter systematischer Fehler aufgetreten sein, der sich 

auch an der geringen Zahl von Dehydrations­Fällen bei Kleinkindern zeigt.  

5.2 Wetterdaten 

Es wurden im Projekt allein die Wetterdaten der DWD­Station 02014, Hannover­Langenhagen, für 

die gesamte Untersuchungsregion herangezogen.  

Vergleicht man die Temperaturkurven der drei in der „subkontinentalen“ Klimaregion liegenden 

Stationen Hannover­Langenhagen, Braunschweig sowie Lüchow miteinander, so sind keine 

gravierenden Abweichungen voneinander festzustellen. Die maximal aufgetretene 

Temperaturdifferenz beträgt für die in der folgenden Abbildung dargestellten Temperaturverläufe 

maximal 1,5 Grad: 

Abbildung 5.1: Gemessene Temperaturtagesmittelwerte an drei in der subkontinentalen Klimaregion gelegenen 

DWD­Wetterstationen sowie maximale Differenz zwischen den Stationen (rechte Achse); geglättete Verläufe. 

Allerdings muss angemerkt werden, dass alle Wetterstationen nicht im urbanen Bereich liegen. 

Etwaige Effekte durch Hitzeinseln im großstädtischen eng­bebauten Bereich werden durch die 

Kurven nicht abgebildet. 

5.3 Konsequenzen für die nächste Projektphase ­ Fazit 

Die im Rahmen der Pilotphase betrachteten Jahre 2022 und 2023 weisen vergleichsweise wenige 

mehrtägige Hitzeperioden auf. Die bisherigen Untersuchungsergebnisse sind auch aufgrund der eher 

geringen Hitzebelastung in den beiden bislang betrachteten Jahren noch mit zu starken 

Unsicherheiten in der Aussage verbunden.  

Daher sollen die Analysen in einem erweiterten Beobachtungszeitraum fortgesetzt sowie auf 

Hauptdiagnosen beschränkt werden (vgl. Kapitel 4). Die Erforderlichkeit des Folgeprojektantrags lässt 

sich somit durch zwei Punkte beschreiben: 
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1. Fokus auf Hauptdiagnosen: Es wurde durch die in der Pilotphase ermittelten Ergebnisse 

deutlich, dass die Auswertungen auf die Hauptdiagnose begrenzt werden sollten: Die 

Berücksichtigung von Fällen auf Basis von Nebendiagnosen führt zu einer unscharfen 

Falldefinition, was die untersuchten Klima­Effekte beeinträchtigt. Liegt der Fokus allein auf 

Hauptdiagnosen, sind Effekte stärker abbildbar, jedoch hat sich die Fallzahl im 

Beobachtungszeitraum des Erstantrages (zwei Jahre) dadurch beträchtlich reduziert. Zum 

Erhalt der statistischen Power müssen somit mehr Beobachtungen "gewonnen" werden. Als 

Lösung für dieses Problem wird somit ein reduzierter Umfang von (spezifisch 

klimabedingten) Krankenhausfällen einem größeren Beobachtungszeitraum in Betracht 

gezogen.  

2. Ausdehnung der Beobachtungsphase: Die bislang ausschließlich betrachteten Jahren 2022 

und 2023 stellen eine vergleichsweise kurze Beobachtungsperiode für derartige 

Verlaufskurven dar. Zudem ist für diese beiden Jahre die geschätzte Übersterblichkeit 

deutlich geringer als für einige Vorjahre (an der Heiden, 2025b), da relativ wenige 

mehrtägige Hitzeperioden auftraten. Mithin fehlen „deutliche Expositionen“, für die am 

ehesten Effekte erkannt werden können. Als Lösung für dieses Problem sollte ein größerer 

Zeitraum in den Fokus genommen werden, weshalb im vorliegenden Folgeantrag die Jahre 

2018­2024 mit der in der Pilotphase erarbeiteten Methodik analysiert werden sollen. Die 

durch die CoViD­19­Pandemie möglicherweise verzerrten Jahre 2020 und 2021 reichen 

hierfür alleine nicht aus.  Ein weiterer Vorteil von mehr Beobachtungsjahren liegt darin, dass 

die einzelnen Jahre als Strata in einer konditionierten Poissonregression definiert werden 

können (analog zu Weiberger, 2014). 

Die Auswertungen der Pilotphase weisen darauf hin, dass die statistische Power sowie die Variabiltät 

der Exposition eine Ausweitung des Beobachtungszeitraums mit mehr Hitzeereignissen und zudem 

die Fokussierung auf Hauptdiagnosen dazu beitragen werden, um belastbare Aussagen zu den 

weiterhin primär zu beantwortenden Forschungsfragen zu generieren. 

Daher baten AOK Niedersachsen und NLGA am 15.08.25 um Genehmigung, um 

Krankenhausaufnahmen von 01.01.2018 – 31.12.2024 in die geplante, dann erweiterte Untersuchung 

einbeziehen zu können (gemäß § 75 Absatz 2 SGB X). Ausgehend vom Erstantrag ergibt sich für 

dieses Hauptprojekt die Notwendigkeit einer neuen Filterziehung:

­ Es wird auf eine Patienten­ID verzichtet.  

­ Statt der Angabe des Pflegestatus zu einem fixen Stichtag (31.12.2023) werden nun 

fallspezifische Angaben zum Pflegestatus (stationäre Pflege ja / nein) zum jeweiligen Tag der 

Krankenhausaufnahme in den Datensatz aufgenommen.   

­ Weiterhin werden die Falldefinitionen der einzubeziehenden Fälle auf die Hauptdiagnosen 

reduziert, d.h. in das anstehende Hauptprojekt werden nur Fälle, die eine der 

Einschlussdiagnosen als Hauptdiagnose aufweisen, einbezogen.  

­ Zudem wird die Beobachtungsperiode des Hauptprojektes auf die Jahre 2018 ­ 2024 

ausgeweitet: Eingeschlossen werden somit alle Krankenhausaufnahmen von weiblichen und 

männlichen AOKN Versicherten vom 01.01.2018 bis 31.12.2024, wohnhaft in der definierten 

Untersuchungsregion mit einer der Zieldiagnosen als Hauptdiagnose im stationären Fall. 

Die Genehmigung hierzu wurde am 25.09.25 seitens des niedersächsischen Sozialministeriums 

erteilt. Die neu zusammengestellten Falldaten wurden am 10.11.25 an das NLGA übermittelt.
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